

Institute for Environment and Sustainability

Air quality & Integrated Assessment Modeling over the Po-Valley

http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

POMI

Po-Valley Model Intercomparison exercise <u>Groups</u>: FUB (D), VITO (B) INERIS (F), CESI (I), Met.NO (N), USB (I) <u>Focus</u>: Yearly O3 and PM levels <u>Scenarios</u>: BC / Policy / Sensitivity

POMI

European Commission oint Researc Institute for Environment and Sustainability RIAT Regional Integrated Assessment Tool INPUT DE XTERNAL DB INPUT FILES **GRIDDING PROCEDUR** GIS INTERFAC

RIAT

POMI

➤ Analyse the effectiveness of regional emission abatement measures on air quality within the Po-Valley for different time horizons (2010 → 2020). Investigate the added value of regional .vs. European scale measures.

POM

- Assess uncertainties in model responses to emission scenarios (multi-model approach)
- Sensitivity analysis to different factors, e.g. scale, spatial resolution, emissions, boundary conditions, meteorology, …
- Make use of the most updated information to feed AQ models (construction of an emission inventories covering the entire Po-Valley)

5

An illustration of the complexity to ensure consistency among different information sources

				VALLE	TRENTINO		FRIULI VENEZIA		EMILIA			OUT OF ITALY
SNAP	SNAP DESCRIPTION	LOMBARDIA	PIEMONTE	D'AOSTA	ALTO ADIGE	VENETO	GIULIA	LIGURIA	ROMAGNA	TOSCANA	MARCHE	AND SEA
1	COMBUSTION IN ENERGY AND TRANSFORM. INDUSTRIES	INEMAR	INEMAR	APAT	INEMAR	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	EMEP
2	NON-INDUSTRIAL Combustion plants	INEMAR	INEMAR	APAT	INEMAR	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	EMEP
3	COMBUSTION IN MANUFACTURING INDUSTRY	INEMAR	INEMAR	APAT	INEMAR	INEMAR (75% Poll)	APAT	APAT	APAT	APAT	APAT	EMEP
4	PRODUCTION PROCESSES	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	APAT	APAT	APAT	APAT	EMEP
5	EXTRACTION. & DISTRIBUTON OF FOSSIL FUELS+ GEOTHERMAL. ENERGY	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	APAT	APAT	APAT	APAT	EMEP
6	SOLVENT AND OTHER Product use	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	APAT	APAT	APAT	APAT	EMEP
7	ROAD TRANSPORT	INEMAR	INEMAR	APAT	INEMAR	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	EMEP
8	OTHER MOBILE SOURCES AND MACHINERY	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	APAT	APAT	APAT	APAT	EMEP
9	WASTE TREATMENT AND Disposal	INEMAR	INEMAR	APAT	INEMAR	APAT	APAT	APAT	APAT	APAT	APAT	EMEP
10	AGRICULTURE	INEMAR	INEMAR	APAT	INEMAR	APAT	INEMAR (75% Poll)	APAT	APAT	APAT	APAT	EMEP
11	OTHER SOURCES AND Sinks	INEMAR	INEMAR	APAT	INEMAR	APAT	INEMAR (VOC Only)	APAT	APAT	APAT	APAT	EMEP

6

	Model		50 km Europe	6 km Po-Valley	3 km Lombard
	CHIMERE (FR)	INERIS	Х	Х	X
-	RCG (DE)	Freie Universität		Х	Х
	EMEP (NO)	Meteorologisk institutt	Х	Х	
1	CAMx (IT)	CESI RICERCA		Х	Х
	AURORA (BE)			Х	Х
	TCAM (IT)	unies		Х	

Base Case 2005

Policy oriented scenarios (2012 – 2015 – 2020)

Sensitivity scenarios

(process understanding)

RIAT scenarios (IAM robustness) → Current Legislation (CLE)
→ Maximum Technical Feasible (MTFR)
→ Air Quality Plan (AQP)

- → Regional and trans-boundary backgrounds
- \rightarrow Boundary conditions
- → Meteorology
- → Emission inventory
- → Specific processes (SOA, biogenics...)
- \rightarrow Model configuration

 \rightarrow Cost effective scenarios

Despite the improvements made in preparing the emission inventory and developments made in AQ models in the last years, models exhibit difficulties to reproduce accurately AQ fields in the Po Valley area.

- All models show a large variability with O3 and PM. Some models show satisfactory skills regarding O3 modelling but almost all models fail to reproduce PM correctly.
- PM concentrations are largely underestimated especially in the wintertime (~40%)
- Model variability is highest (~25 ug/m3) in high concentration areas (i.e. urban areas for PM and pre-Alpine regions for O3)
- The coarse and organic PM fractions are strongly underestimated especially in winter but speciated measurements are only available at a single station (Ispra)
- Meteorological modeling is a key factor.

q

Differences in PM10 concentrations (January) obtained with an observation nudged and non nudged meteorological drivers (MM5)

About 80 yearly AQ simulations have been performed in the frame of POMI

Policy scenarios: CLE, AQP and MFR in 2012, 2015 and 2020)

Sensitivity scenarios (B. Cond., SOA, biogenic, background...)

- PM10 levels in RL are mostly a local phenomena (75% from R. Lombardy, 80-85% from Po Valley). With larger percentages in winter time.
- Model responses to emission scenarios are very consistent in relative terms (model bias is corrected)

More model variability with O3 responses than with PM10

> More consistent responses on mean values than on exceedances

11

RIAT

Scenario Approach

OPERA meeting, Jun 2011

Towards integrated Assessment at the regional scale

OPERA meeting, Jun 2011

Identification of efficient sub-national and local policies

- Consistent with national and EU air quality standards
- Focused on local/regional scale:
 - o specific features of the area o the meteorological and chemical regimes of the domain
 - o Flexibility in the definition of AQP
- Technological constraints
- Exploration of the optimized solution

RIAT procedure

Exploration of the solution space

OPERA meeting, Jun 2011

16

PARETO Boundary

- Although AQ modeling remains a challenge in the Po Valley area, some insight has been gained through the POMI exercise. And the exercise has been a good test case to build confidence in the AQ simulations used in RIAT.
- RIAT is one of the few regional IAM existing at present. It makes use of new methodologies (e.g. non-linear ANN), accounts for locally designed measures and via its exploration of the possible optimized solutions provides help to policy makers in their decision taking.