

OPERA:

AN INTEGRATED ASSESSMENT MODEL TO PLAN EFFECTIVE AIR QUALITY POLICIES

C. Carnevale, G. Finzi, R. Mansini, E. Pisoni, A. Visioli, <u>M. Volta</u> DII, University of Brescia

RIAT - OPERA

JRC

- Beneficiaries
 - UNIVERSITY of BRESCIA
 - TERRARIA

RIATLombardia

OPERA

→ LIFE+

- Beneficiaries
 - ARPA-ER
 - UNIVERSITY of BRESCIA
 - TERRARIA
 - CNRS
 - ➢ JRC, RER, ASPA
- RIAT+
- Emilia Romagna, Alsace

20th June 2011

IAM architecture

Input databases

emission inventories and projections
emission reduction measures:

- ✓ technical measures
- ✓ non-technical measures
- ✓ costs
 •Emission-concentration

relationships (CTM simulations)

Decision model

what-if analysis
cost-benefit analysis
cost-effective analysis
multi-objective analysis

Source-receptor models

Deliverables

•efficient policies
•objective values
•post-processing:

✓ ex-post analysis
✓ sensitivity

20th June 2011

Decision model approaches

- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis

Decision model

- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis

 $x \in \Theta$

J(x) is the objective function to be optimized

- *x* is the set of decision variables
- Θ is the set of feasible decisions

20th June 2011

Decision model

Cost-benefit analysis:

J(x) is a scalar function

all benefits and costs are monetized and assessed in a single function

- Rabl, A., Spadaro, J. V., &Zwaan, B. V. D. (2005). Uncertainty of air pollution cost estimates: To what extent does it matter. Environmental Science & Technology, 39, 399–408.
- Reis, S., Nitter, S., & Friedrich, R. (2005). Innovative approaches in integrated assessment modelling of European air pollution control strategies - Implications of dealing with multipollutant multi-effect problems. Environmental Modelling & Software, 20, 1524–1531.
- Vlachokostas Ch., Achillas Ch., Moussiopoulos N., Hourdakis E., Tsilingiridis G., Ntziachristos L., Banias G., Stavrakakis N., Sidiropoulos C. (2009). Decision support system for the evaluation of urban air pollution control options: Application for particulate pollution in Thessaloniki, Greece, Science of the Total Environment, 407, 5937–5948.

Decision model

Cost-effective analysis

J(x) is a scalar function

a single objective is optimized, while others required performances are included as constraints

RAINS/GAINS system, APD IIASA

Carslon, D., Haurie, A., Vial, J.-P., & Zachary, D. (2004). Large-scale convex optimization methods for air quality policy assessment. Automatica, 40, 385–395.

Shih, J.-S., Russell, A., & McRae, G. (1998). An optimization model for photochemical air pollution control. European Journal of Operational Research, 106, 1–14.

20th June 2011

Decision model **Multi-objective analysis:** J(x) is a vector J(x) represents different and often conflicting objectives.

-objective analysis of ground-level ozone concentration control. Journal of

Guariso, G., Pirovano, G., Volta, M. (2004). Multi-objective analysis of ground-level ozone concentration control. Journal of Environmental Management, 71, 25–33.

Pisoni, E, Carnevale, C., Volta, M. (2009). Multi-criteria analysis for PM10 planning. Atmospheric Environment, 43, 4833-4842

Decision problem

AQI: Source-Receptor models

Source-Receptor models

- S-R models identified processing CTM model simulations
- Non linear processes
- Local features

20th June 2011

Design of experiments

DoE: CTM simulations

Scenario	NOx	VOC	NH3	РМ	S02
0	С	С	С	С	С
1	В	В	В	В	В
2	А	А	А	А	А
3	А	В	В	В	В
4	В	А	В	В	В
5	В	В	А	В	В
6	В	В	В	А	В
7	В	В	В	В	А
8	В	А	В	А	В
9	А	А	В	А	А
10	А	В	А	В	В

C = CLE2010 + 10%

• A = MFR2020

B = (CLE2015 + MFR2015)/2

20th June 2011

Source-receptor models

- Input data: precursor emissions
- Target data: AQI

S-R model inputs: quadrant precursor emissions

S-R model output: AQI

PM10: basecase

20th June 2011

2011

S-R models

20th June 2011

Decision variables

Detailed approach

- Technical measures:
 - Actual technical measures spreading
 - Actual technical measures spreading and replacing

Lumped approach

- Technical measures:
 - Macrosector precursor emission reductions

Non technical measures

20th June 2011

Costraints

- Technical measures feasibility
- Technical and non technical measure mix
- National and European plan harmonization

20th June 2011

- Emission reduction measures replacing
- Budget constraints due to on going or foreseen AQ policies

Problem formalization

 $\min_{X_{i,j,k,t}} J(X_{i,j,k,t}) = \min_{X_{i,j,k,t}} AQI(X_{i,j,k,t})$

 $inC(X_{i,j,k,t}) \le L \qquad 0 \le L \le \overline{L}$

If no technology replacement:to ensure the technology feasibility:

 $X_{i,j,k,t}^{CLE} \leq X_{i,j,k,t} \leq \overline{X}_{i,j,k,t}^{CLE} \quad \forall i,j,k,t$

•to ensure the emission conservation: $\sum_{t \in T_{i,i,k}} X_{i,j,k,t} \le 1$ If technology replacement: • to ensure the technology feasibility: $0 \le X_{i,j,k,t} \le \overline{X}_{i,j,k,t}^{CLE} \quad \forall i, j, k, t$

 $(X_{i \ i \ k \ t} = appl. rates)$

•to ensure the emission conservation: $\sum_{t \in T_{i,j,k}} X_{i,j,k,t} \leq 1$

• to ensure optimal reduced emissions > CLE

$$\sum\nolimits_{t \in T_{i,j,k}} eff_{i,j,k,t,p} \cdot X_{i,j,k,t} \geq \sum\nolimits_{t \in T_{i,j,k}} eff_{i,j,k,t,p} \cdot X_{i,j,k,t}^{CLE} \ \forall i,j,k,t$$

 $_{ullet}$ to ensure no controlled emission in CLE remains without control

$$\sum_{t \in T_{i,j,k}} X_{i,j,k,t} \geq \sum_{t \in T_{i,j,k}} X_{i,j,k,t}^{CLE}$$

20th June 2011

Effective solutions

20th June 2011

Problem options

1st ANNUAL MEETING

19

- Seasonal air quality indexes
- Point and area emission sources
- Optimization domains
- Population exposure
- GHGs budget

20th June 2011

System tests

Emilia Romagna
 Alsazia
 Standard methodology for European regions

IAM architecture

Input databases

 •emission inventories and projections
 •emission reduction measures:

 ✓ technical measures

- technical measures
- ✓ non-technical measures
- ✓ costs
 •Emission-concentration relationships (CTM simulations)

Decision model

what-if analysis
cost-benefit analysis
cost-effective analysis
multi-objective analysis

Source-receptor models

Deliverables

•efficient policies
 •objective values
 •post-processing:

 ✓ ex-post analysis
 ✓ sensitivity

20th June 2011

2011

