

IAM architecture

Input databases

- emission inventories and projections
- •emission reduction measures:
 - ✓ technical measures
 - ✓ non-technical measures
 - √ costs
- •Emission-concentration relationships (CTM simulations)

Decision model

- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis

Source-receptor models

Deliverables

- efficient policies
- objective values
- •post-processing:
 - √ex-post analysis
 - √ sensitivity

IAM at European scale

- Cost effective
- Multi-pollutant, multi-effects
- Country to grid
- Linear S-R matrixes
- Negotiation
- Targets

IAM at national to local scale

IAM	domain	methodology	AQIs	measures	CTM model	Sensitiviy analysis
BelEUROS/RIO/ External costs	National, sub-national	Scenario assessment	Air quality	Technical and non technical	BelEUROS	Emissions, meteorology
FRES (FIN)	National, sub-national	GAINS	Air quality, GHGs	Technical	UDM-FMI and SILAM	Emission, spatial scale
GAINS (FR)	National	GAINS	Air quality, GHGs	Technical	EMEP	-
GAINS (NL)	subnational	GAINS	Air quality, GHGs	Technical	OPS	Spatial scale
MINNI (IT)	national	GAINS	Air quality	Technical and non technical	FARM	Emissions, meteorology
OTELLO (D)	national	Scenario assessment	Air quality	Technical	-	emissions planning indicators
RIAT (IT)	Sub-national	multiobjective	Air quality	Technical	TCAM	Planning indicators
SCARP (S)	Regional	GAINS	Air quality, GHGs	Technical	EMEP	emissions source-receptor relationships
SRI (PL)	local	-	Air quality	-	CALPUFF	EMISSIONS
UKIAM (UK)	national	Scenario assessment	Air quality	Technical and non technical	EMEP, FRAME, BRUTAL	Spatial scale, traffic emissions

IAM at sub-national to local scale

- supporting local decision maker (DSS)
- harmonization with National and International air quality plans
- accounting for local peculiarities in terms of emissions, meteorology and technological, financial and social constraints.
- selecting planning indicators (pollutants, exposure, targets and exceeding levels, ...)
- selecting effective policies (time horizon, spatial distribution, domain features and constraints, ...)

Local IAM DSS

- DSS development is a recursive process
- Features
 - Locality
 - Flexibility
 - Openness
- Standard tool
- Air quality Directives review