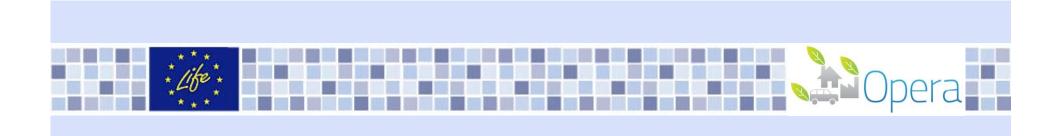
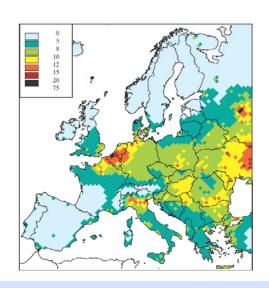


RIAT+ methodology and tool for local and regional IAM

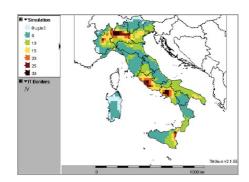
C. Carnevale, G. Finzi, **E. Pisoni**, M. Volta (University of Brescia) R. Gianfreda, **G. Maffeis**, D. Roncolato (TerrAria) G. Guariso (Politecnico di Milano)



METHODOLOGY



Background


European scale

■ Rains/Gains by IIASA

National scale

- **■** GAINS Italy by ENEA
- **■** GAINS-Netherlands
- FRES-Finland
- \rightarrow

Project objectives

- To set-up a methodology to assist sub-national authorities in:
 - preparing, implementing and monitoring air quality plans, to reduce population and ecosystems exposure;
 - Integrating regional air quality plans with national and European ones;
 - assessing the synergies to reduce the burden of poor air quality and at the same time limiting climate change impacts.
- To develop an integrated assessment tool (**RIAT+**) to support the proposed methodology.

RIAT+ methodology

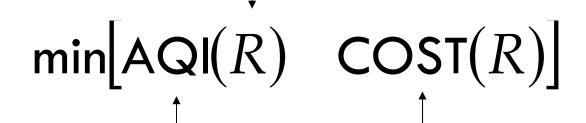
- Emission inventories and projections
- Emission reduction measures
- Technical
- Non Technical
- CTM simulations

Input databases

Decision Model

- Source Receptor models
- Scenario analysis
- Cost-effectiveness
- Multi-objective analysis

- Efficient policies
- Objective values
- Post-processing


Output

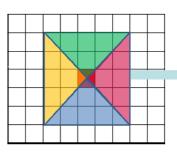
Decision problem

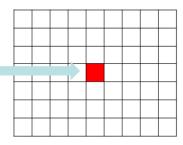
Set of feasible decision variables (emission reduction - TM and NTM measures)

Internal Costs

Air Quality Index: PM10, PM2.5, Ozone, NOx, ...

AQI: indexes (1)


- Air Quality Index (AQI)
 - PM: # of daily PM10 exceedances, mean PM10 and PM25
 - O3: AOT40, SOMO35, mean MAX8h
 - NO2: mean NO2
- ∃ Time aggregation
 - Year
 - Seasonal
- Spatial aggregation
 - Average (simple or population weighted)
 - # cells over threshold



AQI: models (2)

- Nonlinear functions: based on Neural Networks
- Input data for training:
 - emissions -> air quality simulations -> concentrations

- to derive the minimum set of air quality simulations:
 - Design of Experiments

AQI: Design of Experiment (3)

SCENARIOS	AREAL EMISSIONS					POINTEMISSIONS				
	NOX	voc	NH ₃	PM	SO ₂	NOX	VOC	NH ₃	РМ	SO ₂
0	В	В	В	В	В	В	В	В	В	В
1	L	L	L	L	L	В	В	В	В	В
2	Н	Н	Н	Н	Н	В	В	В	В	В
3	Н	L	L	L	L	R	В	В	В	В
4	L	Н	L	L	L	В	В	В	В	В
5	L	L	Н	L	L	В	В	В	В	В
6	L	L	L	Н	L	В	В	В	В	В
7	L	L	L	L	Н	В	В	В	В	В
8	Н	Н	L	L	L	В	В	В	В	В
9	Н	L	Н	Н	Н	В	В	В	В	В
10	Н	L	Н	L	L	В	В	В	В	В
11	Н	L	Н	L	Н	В	В	В	В	В
12	В	В	В	В	В	L	L	L	L	L
13	В	В	В	В	В	Н	Н	Н	Н	Н
14	В	В	В	В	В	Н	L	L	Н	Н
15	В	В	В	В	В	L	L	L	L	Н
16	В	В	В	В	В	Н	L	L	L	Н
17	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
18	Н	L	Н	Н	Н	Н	L	L	Н	Н
19	L	L	L	L	H	L	L	L	L	Н
20	Н	L	Н	L	Н	Н	L	L	L	Н
21	Н	Н	L	L	L	Н	Н		1	1

B = cle 2010

H = mfr2020

L = average of B,H

Cost Index

- Linear functions:
- Data used:
 - Activity level:
 - local DB and GAINS
 - Unit costs:
 - GAINS
 - Technologies penetration levels:
 - Control variables

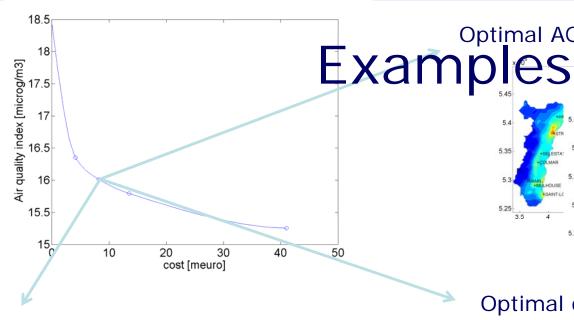
Control variables

- Technical (GAINS) and non-technical (local DB) measures:
 - Sector-activity
 - Removal efficiences
 - Application rates at CLE
 - Maximum penetration levels
 - Unit costs

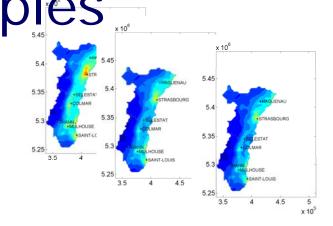
NOTE: for NTM, much more uncertainties on data

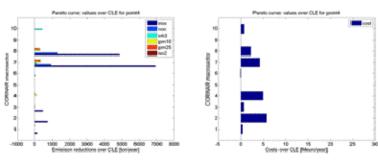
Constraints

- Technology feasibility
 - Penetration level between minimum and maximum values
- Measures complementarity
 - Mass conservation
- Technology increasing efficacy
 - Optimal removed emissions higher than CLE


Ex-post analysis

For air quality optimal control policies


- GHG budget (CO2, CH4, N2O, F-gases)
 - Using activity levels and GAINS GHG emission factors
- External costs (mortality and morbidity) for PM10
 - YOLL
 - Respiratory problems
 - Cardiovascular deseases
 - ...


Optimal AQI and emissions maps

List of optimal measures to be applied

MS									
2	Residential- commercial: fireplaces	Fuelwood direct	Fireplace improved	0	0.00002	0	1.4	0.4	0
8	Other transport: agriculture & forestry	Medium distillates (diesel, light fuel oil, includes biofuel)	Stage 3B control on construction and agriculture mobile sources	3	0.000008	0	0.5	0.1	0
4	Construction activities	No fuel use	Spraying water at construction places	0	0	0	0.4	0.02	0
3	Ind. Process: Aluminium production - secondary	No fuel use	High efficiency deduster- industrial processes	0	0	0	0.06	0.01	0

Optimal costs and emissions per ms

TECHNICAL IMPLEMENTATION

What is RIAT+?

RIAT+ (Regional Integrated Assessment Tool +) developed by University of Brescia and TerrAria for IES-JRC is a software designed to identify cost-effective Air Quality abatement strategies at regional scale. RIAT+ covers the chain from emission abatement technologies and related costs to PM, NO₂ and O₃ concentrations and impacts, applied by Regional Authorities to evaluate the efficiency of Air Quality abatement plans.

RIAT+ have "Non-commercial purposes":

- i. academic research or other scholarly activity
- ii. activities by public authorities for their own purposes

Why a tool?

- Documentation & tracking of the approach with a user-friendly system
- Use of common tool/methodology, integrating local knowledge (regional emission inventory,

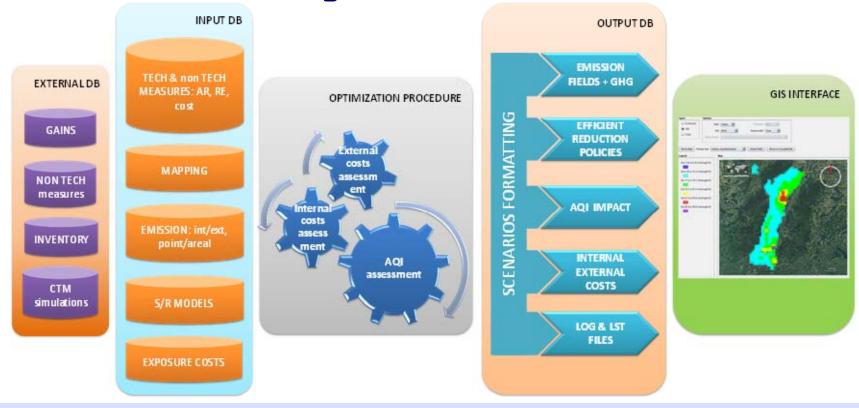
modeling system, te Code number of the exceedance situation

b. Code(s) of the measure(s)

European sharing of technologies, policie

technologies, policie f. Estimated total co

European reporting


c. Planned timetable of implementation

- d. Indicator(s) for monitoring the progress
- e. Funding allocated (years; amount in EURO)
- Estimated total costs (amount in EURO)
- g. Estimated level in the years when the limit value has to be met, taking the additional measures into account
- h. Comments for clarification if needed

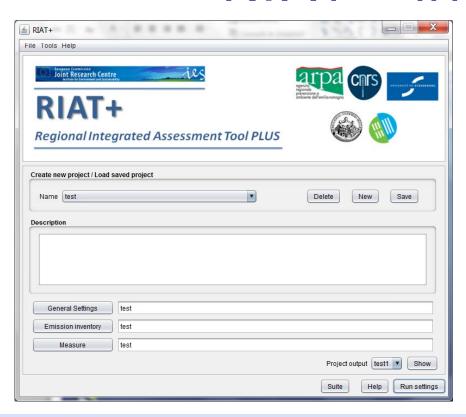
RIAT+ system flow chart

RIAT+: software solution

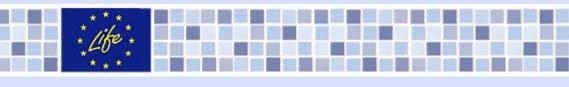
Regional Integrated Assessment Tool Plus

A DSS for air quality planning developed by

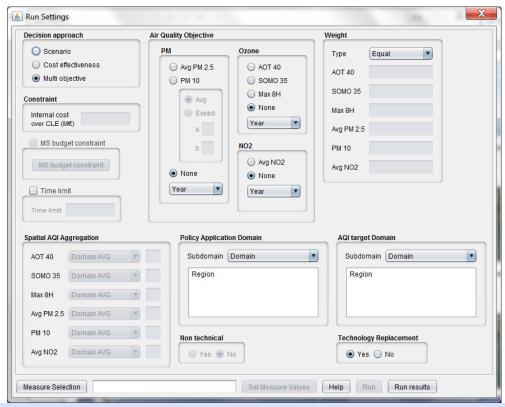
ARPA Emilia Romagna(I)


RIAT+ system is developed on J2SE platform (java 2 standard edition). RIAT+ pre- and post-processing is managed by FORTRAN executable. Optimization module and S/R are MATLAB functions. RIAT+ dbase is Apache Derby (open source in Java). RIAT+ GIS interface is NASA World Wind.

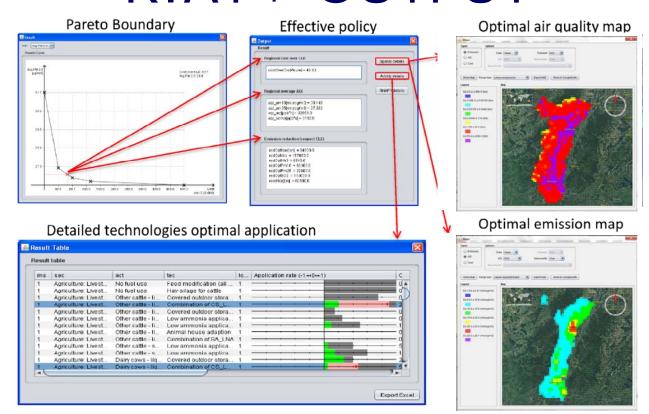
RIAT+ system is developed with open-source technologies.



RIAT+ interface


Main RIAT+ modules:

- Project setup
- Domain & S/R
- Emission inventory
- Measure database
- Run setup
- Run results


RIAT+ decision: run settings

RIAT+ OUTPUT

OPERA «plot»

1st act: Emilia Romagna S/R

functions

2nd act: Alsace optmization

results

3rd act: Prototype demo