

Operational Procedure for Emission Reduction Assessment

Implementing of RIAT+ in Emilia Romagna

M.Stortini, M.Deserti, P.Veronesi, P.Ugolini, E.Minguzzi, G.Bonafè, S.Tugnoli Regional Agency for Enviroinmental Protection and Prevention of Emila-Romagna

RIAT+ tool

Input data for RIAT+

16th Sept. 2013

- Emission inventory with areal and point emissions on the defined domain
- "Mapping" between GAINS database and inventory classification (SNAP)
- Definition of non-technical measures
- Preparation of technical/non-technical measure data base
- Set up of several emission scenarios to define all possible evolutions

FINAL CONFERENCE

Simulations with chemical transport model (NINFA system)

Regional Emission Inventory

- The regional inventory of atmospheric emissions has been undertaken by ARPA Emilia Romagna on behalf of the Emilia Romagna Region, with reference to the year 2010 using INEMAR
- INEMAR (INventario di EMissioni in ARia Air Emission Inventory) is a database developed in order to carry out an atmospheric emission inventory, that is say, to estimate emissions of different pollutants for different activities (heating, road transport, agriculture, industry, etc.)

Emilia Romagna inventory 2010

- Combustion in energy and transformation industries
- Non-industrial combustion plants
- Combustion in manufacturing industry
- Production processes
- Extraction and distribution of fossil fuels and geo. energy
- Solvent and other product use
- Road transport
- Other mobile sources and machinery
- Waste treatment and disposal
- Agriculture

"Mapping" between GAINS and SNAP inventory classification

	GAINS				
MS	SECT	ACT	СОМВ	SECT	ACT
Non industrial combustion	Residential	Boiler <50 Kw	Natural gas	DOM	GAS
Agriculture	Organic waste water	Pig	No Comb	AGR_PIG	PL
Road Trasport	Car	Urban	Gasoline	TRA_RD_ LD4C_UR BAN	GSL

16th Sept. 2013

Preparation of technical measure data base (1/2)

Download of the GAINS dataset

Microsoft Access Tool

It semplifies the update process of the entire dataset

_It produces a RIAT compatible dataset in less than two minutes after an update of the entire dataset

_Tables can be filtered easily. Any manual update can't destroy the integrity of the full dataset

Preparation of technical measure data base (2/2)

dbRiat Compiler

_The tool is localized in English. All the updates are automatized by pressing a button

_The update process is fully controllable and single parts of the entire dataset can be updated individually

_The software should work with every GAINS dataset as long as the base structure doesn't change

Definition of "non-technical "(energy) measure

Domestic: •Coimbentation •Heat_pump •Wall_insulation •Condensation Boiler •Solar panel •Double glass •Thermostatic valve

Traffic: •Cycling line •TLZ •Velocity Reduction •Electric car •Electric bike

Energy production:

HydroelectricWindPhotovoltaic

16th Sept. 2013

013

The structure of measure data base

2226 measure 2146 "technical" 80 "non technical"

For each measure is defined:

- 1. Removal efficiency (RE) for each pollutant (i.e. NOx,PM10, etc.)
- 2. Application rate (AR) for different years (i.e. 2010,2015, 2020, etc)
- 3. Maximum application rate
- 4. Unit Cost
- 5. Further flags useful for the tool

16th Sept. 2013

	Example	of measure	e defined in the data		
		base			
	SECT	АСТ	ТЕСН		
	Agriculture:Livestock pigs	Pigs - liquid (slurry) systems	Combination of LNF_BF_CS_LNA		
	HDV – trucks	Medium distillates	EURO V on heavy duty diesel road s vehicles		
	Industry: Comb. in boilers	Natural gas	No control		
	LDV: cars and smallbuses	LPG	EURO 6		
	LDV: light comm. trucks	Medium distillates	SEURO 4		
	Motorcycles with 4-st. en.	Gasoline	Stage 2 control on motorcycles		
	Ot. Tran.: agriculture	Medium distillates	s Stage 3B control		
	Residential Fireplaces	Fuelwood direct	Fireplace improved		
	Residential, commercial	Natural gas	Heat pump		
	Residential, commercial	Natural gas	Insulation of walls and floors		
	Residential, commercial	Natural gas	Vacuum-sealed solar thermal panels		
16	Residential, commercial	Natural gas	Replacement of single glazing with double glazing		

Model simulation setup for Artificial Neural Network (ANN)

- Meteo: COSMO-I7BC: Prev'air CLE 2020
- Emission inventory: Regional, National and European Inventory
 CTM:CHIMERE, version 2008c
- •Horizontal resolution: 5km
- •Vertical level:8
- •Domain:128*82

16th Sept. 2013

FIN.

ANNs Emission Scenarios

Applying different emission control strategies (using emissions values varying between CLE-current legislation and MFR–maximum feasible reduction), a number of 12 alternative emission reduction scenarios have been simulated.

	AREAL AND POINT EMISSIONS					OUTSIDE REGIONAL DOMAIN
SCENARIOS	NOX	VOC	NH3	PM	SO2	
0	В	В	В	В	В	B2 (cle2020)
1	L	L	L	L	L	B2 (cle2020)
2	Н	Н	Н	Н	Н	B2 (cle2020)
3	Н	L	L	L	L	B2 (cle2020)
4	L	Н	L	L	L	B2 (cle2020)
5	L	L	Н	L	L	B2 (cle2020)
6	L	L	L	Н	L	B2 (cle2020)
7	L	L	L	L	Н	B2 (cle2020)
8	Н	Н	L	L	L	B2 (cle2020)
9	Н	L	Н	Н	Н	B2 (cle2020)
10	Н	L	Н	L	L	B2 (cle2020)
11	Н	L	Н	L	Н	B2 (cle2020)

B represents the 2015CLE incremented of 15%
H represents the 2015MFR reduced of 15%
L represents the average reduction between B and H
B2 represents the 2020CLE

16th Sept. 2013

ANNs PM10 - YEAR

ANNs SOMO35 - SUMMER

 16th Sept. 2013
 Error Map – Scenario 2

ANNs NO2- YEAR

RIAT+		Stationary Street St.	and the second second	
ile Tools Help				
R4	gional egrated sessment ol PLUS		Augustation	iles pear Community
Create new project / Load sa	ved project	×	Delete New	Save
Description				
				*
Domain				
Emission inventory				
Measure				
S/R functions				
Run project		Project output		
Run preprocessing	Run settings	Run Show		

RIAT+ can be apply to different subdomain

PM10 annual (weighted over population)

Cost over CLE [UA]

FINAL CONFERENCE

Postprocessing pm10 output

Meteorology variability has been estimated from multiannual model simulation
Sub grid variability has been estimated comparing the model basecase output with higher resolution interpolation of observed data performed with kriging algorithm

Conclusion and remarks

•A data set of technical and not technical (energy) measure has been prepared for to Emila Romagna.

•The nonlinear relations between emissions and air quality indexes are identified for Emilia-Romagna region by means of Artificial Neural Networks (ANNs), tuned processing NINFA deterministic air quality modeling system simulations.

•The results confirm that the neural network system ensures very high capability to simulate the non linear source-receptor relationship between AQIs and the emission of their precursors.

•RIAT+ has been apply to define the regional action plan and can be usefull to estimate the effectiveness of measure contained in the plan.

www.operatool.eu

Home

Operational Procedure for Emission Reduction Assessment

An integrated assessment methodology to plan local cost-effective air quality policies harmonized with national and European actions.

The goal of the project is to develop a methodology, a software (RIAT+) and the relative guidelines to support local authorities for the planning of regional policies integrated with national and European actions in order to comply with National and EU air quality standards, considering potential synergies with actions to reduce GHG emissions. This project will be performed in the context of existing agreements between national and regional administrations to reach a common goal in a consistent and efficient way.

Click here to download the project summary (pdf).

era

mstortini@arpa.emr.it